MIXED REVISION CHAPTERS 7 • 8 • 9

Multiple choice

1	Which one of the following is not a prime number?				
	A 1 B 2	С	137	D 211	E 503
2	Matrix $\mathbf{A} = \begin{bmatrix} 1 & 3 \\ 4 & 0 \end{bmatrix}$ and matrix \mathbf{B}	$\mathbf{B} = \begin{bmatrix} 5 & 1 \\ 3 & 2 \end{bmatrix}$. Matrix A + B	= ?	
	$A\begin{bmatrix} 1 & 3 & 5 & 1 \\ 4 & 0 & 3 & 2 \end{bmatrix} B \begin{vmatrix} 4 & 0 \\ 5 & 1 \\ 3 & 2 \end{vmatrix}$	С	$\begin{bmatrix} 6 & 4 \\ 7 & 2 \end{bmatrix}$	$D\begin{bmatrix}14 & 7\\20 & 4\end{bmatrix}$	$E\begin{bmatrix}9 & 15\\11 & 9\end{bmatrix}$
3	$\cot\left(\frac{5\pi}{6}\right) = \frac{1}{2}$		5	D 5	
	A $\overline{\sqrt{3}}$ B $\overline{\sqrt{2}}$	L	$\sqrt{3}$	$D=\sqrt{3}$	E -1
4	3.142857 is				
	A equal to π	B an irra	tional number	C an intege	r
	D equal to $\frac{22}{7}$	E a trans	scendental num	ber.	
5	The matrix \mathbf{A} has order 2 × <i>m</i> , matrix \mathbf{B} has order 4 × <i>n</i> and matrix \mathbf{AB} has order 2 × 3. The values of <i>m</i> and <i>n</i> are:				
	A $m = 3, n = 3$	B <i>m</i> = 2,	<i>n</i> = 3	C $m = 4, n$	= 3
	D $m = 2, n = 4$	E $m = 3$,	<i>n</i> = 4		
6	$\sin\left(\frac{\pi}{12}\right)$ can be expressed as		(-	-)	
	A $2\sin\left(\frac{\pi}{6}\right)\cos\left(\frac{\pi}{6}\right)$	$2\sin\left(\frac{\pi}{6}\right)\cos\left(\frac{\pi}{6}\right)$ B $\sin\left(\frac{\pi}{3}+\frac{\pi}{4}\right)$			
	$\operatorname{C} \sin\left(\frac{\pi}{3}\right)\cos\left(\frac{\pi}{4}\right) - \cos\left(\frac{\pi}{3}\right)\sin\left(\frac{\pi}{4}\right)$	D $\sin\left(\frac{\pi}{3}\right)$	D $\sin\left(\frac{\pi}{3}\right)\cos\left(\frac{\pi}{4}\right) + \cos\left(\frac{\pi}{3}\right)\sin\left(\frac{\pi}{4}\right)$		
	$= \cos\left(\frac{\pi}{3}\right)\cos\left(\frac{\pi}{4}\right) - \sin\left(\frac{\pi}{3}\right)\sin\left(\frac{\pi}{4}\right)$				
7	7 Which one of the following sets is not closed under multiplication?				
	A Real numbers	B Irratio	nal numbers	C {-1, 0, 1}	
	D Integers	E Positiv	ve integers		
8	For the matrix $\mathbf{A} = \begin{bmatrix} 2 & 3 \\ 4 & 5 \end{bmatrix}$, $\mathbf{A}^3 =$?			
	[6 9]		21]	35 15	2]
	A [12 15]	B 28 3	37		2
	$D\begin{bmatrix}8&27\\64&125\end{bmatrix}$	E [116 204	153 269		

7 • 8 • 9 • MIXED REVISION

- 9 Expressed as a difference, sin(x) sin(5x) =
 - A $\frac{1}{2} [\cos(4x) \cos(6x)]$ B $\frac{1}{2} [\cos(4x) + \cos(6x)]$ C $\frac{1}{2} [\cos(x) - \cos(5x)]$ D $\frac{1}{2} [\sin(4x) - \sin(6x)]$ E $\frac{1}{2} [\cos(6x) - \cos(4x)]$

Short answer

- 1 a Show that the equation 4x + 6y = 1987 has no integer solutions.
 - **b** Find a counter example to show that the statement below is false. The equation 3x + 5y = 40 has no positive integer solutions.
- 2 Show that the matrix equation below has no solution. Justify your reasoning.

 $\begin{bmatrix} 12 & 28\\ 15 & 35 \end{bmatrix} \mathbf{X} = \begin{bmatrix} 2 & 5\\ 4 & 10 \end{bmatrix}$

- **3** Select a suitable double angle formula to express sin(x) sin(2x) in terms of cos(x) only.
- 4 Construct the decimal 0.05005000500005... by adding fractions of the form $\frac{1}{2 \times 10^a}$, where $a \in \mathbb{Z}^+$.
- 5 Find the solution to the equation $\begin{bmatrix} 4 & 2 \\ 6 & 5 \end{bmatrix} \mathbf{X} = \begin{bmatrix} 2 \\ 9 \end{bmatrix}$
- 6 a Expand the expression cos (x + 2x) using compound angle and double angle formulas.
 b Hence show that cos (x + 2x) = cos (x)[1 4 sin²(x)]

Application

- 1 Prove by contradiction that $x^3 + x 7 = 0$ has no rational solutions.
- **2** a Show that the following statement is false. If 2n + 7 is odd, then *n* is odd, where $n \in \mathbb{Z}$.
 - **b** Show that for all $n \in \mathbb{Z}$, 2n + 7 is odd.
 - c Show by mathematical induction that $\frac{1}{7 \times 9} + \frac{1}{9 \times 11} + \frac{1}{11 \times 13} + \cdots$ to *n* terms = $\frac{n}{7(2n+7)}$, where $n \in N$.
 - **d** For what values of n will the reciprocal of the sum in part **c** be an odd integer?

3
$$\mathbf{C} = \begin{bmatrix} 5 & 3 \\ 7 & 4 \end{bmatrix}$$
. Find the inverse matrix \mathbf{C}^{-1} .

4 Solve for X.

$$2\mathbf{X} + \begin{bmatrix} 5 & 2 \\ 3 & 1 \end{bmatrix} \mathbf{X} - \begin{bmatrix} 2 & 12 \\ 20 & 12 \end{bmatrix} = \begin{bmatrix} -14 & -6 \\ 22 & -3 \end{bmatrix}$$

- 5 Prove that $[\operatorname{cosec} (x) + \operatorname{cot} (x)][\operatorname{cosec} (x) \operatorname{cot} (x)] = 1$.
- 6 Prove that $\frac{1 + \cot(\beta)}{\csc(\beta)} \cos(\beta) = \frac{\sec(\beta)}{\tan(\beta) + \cot(\beta)}$.